
缺陷自动修复的“卡脖子”问题—
补丁正确性验证技术

文明 华中科技大学

演讲嘉宾

文明
华中科技大学 副教授

文明博士主要聚焦软件安全、软件测试与分析、以及代码大模型安全等研究，在软

件工程领域累计发表了CCF-A类推荐会议或期刊40余篇，其他高水平论文10余篇。

主持国家自然科学基金青年项目、面上项目、以及包括华为胡杨林基金系统软件专

项在内的多项企业合作项目，参与湖北省重点研发项目等重要课题，担任了中国计

算机学会系统软件、以及软件工程专委会委员。他常年担任TSE，TOSEM，TDSC

等CCF-A类国际期刊的审稿人，以及CCF-A/B类会议ASE 2021/2023, ESEC/FSE

2022/2024, SANER 2022, ISSRE 2022/2023的程序委员会委员。同时也荣获了

Internetware 2023杰出论文奖、ACM 新星奖 2023（武汉）、以及入选了第七届

中国科协青年人才托举工程计划。

目 录
CONTENTS

1. 程序自动修复与补丁正确性验证

2. 基于表示学习的补丁验证

3. 基于缺陷定位的补丁排序

4. 总结与展望

程序自动修复与补丁正确性验证
PART 01

程序自动修复—发展历程

• The problem was first formulated in

2005 [Jobstmann, CAV 05]

• Since GenProg [Weimer, ICSE 09] was

proposed in 2009, APR has received

huge research interests.

https://program-repair.org/bibliography.html

 Background

Conventional
Approaches

LLM-based

Deep-Learning
based

程序自动修复—工业界实践

Finding and fixing software bugs
automatically with SapFix and
Sapienz

程序自动修复— SapFix修复框架

bug detected

4: Revert
Partial Diff

3: Revert
Full Diff 1: Template 2: Mutation

triggers

Sapienz
Auto Triage

Trigger Patch
Generator

Fix Patch
Generator

Validated
Revision

Credit: Facebook

Able to identify the
diffs that possibly

induce the failing tests

Revert subsets of diffs so
that the revised program
compiles successfully

Sapienz selects tests for each
recent code diff. Bug triage:
When tests fail, identify the
developer who submitted the
code diff

Whether all tests
are passed

patch strategy

Add null
pointer check

程序自动修复—基本流程

Step 2

Identify the
suspicious buggy

locations

1:Localization 2: Modify Program

Validation of
plausible patches

3: Patch Validation

Mutants
Generation

Validation
by Tests

Behavioral
Analysis

Fix
Synthesis

Search-based

Semantics-based

(also known as generate-and-validate)

 General Process Conventional Automated Program Repair Approaches

程序自动修复技术—基本流程

 General Process

• Lutellier, Thibaud, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. “Coconut: combining context-aware
neural translation models using ensemble for program repair.” In the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pp. 101-114. 2020.

• Jiang, Nan, Thibaud Lutellier, and Lin Tan. "CURE: Code-aware neural machine translation for automatic program
repair." In the 43rd International Conference on Software Engineering (ICSE), pp. 1161-1173. IEEE, 2021.

Program
Repair

Buggy Code

Correct Code

Neural
Machine

Translation

Deep-Learning Driven
Automated Program Repair

程序自动修复技术—基本流程

 General Process

• Chunqiu Steven Xia and Lingming Zhang.
“Keep the Conversation Going: Fixing
162 out of 337 bugs for $0.42 each using
ChatGPT.” ArXiv abs/2304.00385 (2023):

Large-Language Model based
Automated Program Repair

Prompt Design

• Overfitting

Tests are imperfect metric of program correctness, which are incapable of
discriminating between correct fixes and those patches overfit to these tests.

Weak Test Suite

Techniques like GenProg and related techniques do suffer from overfitting [FSE 2015].

if (condition)
return

Deletion
Simply deleting functionalities.

Many of the patches generated by existing approaches are simply
function deletion.

程序自动修复技术—补丁过拟合

Patch correctness assessment remains to be the
open challenge of automated program repair.

补丁正确性验证技术—基本定义

Correct patch: a plausible patch that indeed fixes the target bug is deemed correct;

Plausible patch: a patch that passes the test suite is a plausible patch;

Overfitting patch: a plausible patch that actually does not fix the target bug.

“APR techniques generate more overfitting patches than correct ones on real bugs” – [1][2]

[1] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch plausibility and correctness for generate-and-validate patch generation systems. In Proceedings of the
24th International Symposium on Software Testing and Analysis (ISSTA). ACM, 24–36.
[2] Xuan Bach D.Le, FerdianThung, David Lo,and Claire Le Goues. 2018. Overfitting in semantics-based automated program repair. Empirical Software Engineering 23, 5 (2018), 3007–3033.
[3] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure worse than the disease? overfitting in automated program repair. In Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering. ACM, 532–543.

“Patches overfit to the test suite, often breaking undertested functionality.” – [3]

Identify correct patches
among plausible ones.
(generation, prioritization)

APCA:
Automated
Patch
Correctness
Assessment

 Our Contribution

CapGen
[ICSE 2018]

Automated program repair based
on context information (patch
prioritization)

Extensive Study
[ASE 2020]

The first large-scale study to
investigate the patch correctness
assessment problem

Acro
[TSE 2021]

A automated repair framework for
on-chain smart contract (patch
validation)

Cache
[TOSEM 2022]

An advanced patch assessment
tool based on context-aware code
change embedding

Dataset
[ESEC/FSE 2023]

A large-scale dataset for
patch correctness
assessment

补丁正确性验证技术

 Patch Prioritization
A fixing ingredient should be applied to the location with similar
contexts compared with the location where it is extractedIntuition

Genealogy Context
Tree Structure Similarity

Variable Context
Variable Usage Similarity

Dependency Context
Semantic Similarity

Ancestor Nodes Dependent Nodes

补丁正确性验证技术—补丁排序

����������� ����� < �,�, � > = �� � ∗ ���� � ∗ ������� �, �

 The relative ranks of the incorrect plausible patches

§ Our context-aware
prioritization strategies can
rank of the correct patches
in prior to 98.78% of the
incorrect plausible ones

0 0.2 0.4 0.6 0.8 1

FL(T)

FL(T)&Freq(M)

FL(T)&Freq(M)&Context(S,T)

Before Tie After

补丁正确性验证技术—补丁排序

Avoid
Overfitting

 Patch Prioritization

补丁正确性验证技术—发展历程

APCA: Automated Patch Correctness Assessment Overview

Static
Feature
Based

ssFix [ASE 2017]
• TokenStrct: similarity of

structural tokens
• TokenConpt: similarity of

conceptual tokens

S3 [FSE-2017]
• ASTDist: number of changed

AST nodes
• ASTCosDist: distance of

distinct AST node types
• VariableDist: distance of

locations of variables and
constants

CapGen [ICSE-2018]
• VariableSimi: similarity of

variables
• SyntaxSimi: similarity of

syntactic structures
• SemanticSimi: similarity of

contextual nodes

Anti-patterns
[FSE 2016]
Check if the code change
in the patch violates pre-
defined rules.

“A correct patch is often syntactically and semantically
proximate to the original program”

补丁正确性验证技术—发展历程

APCA: Automated Patch Correctness Assessment Overview

Static
Feature
Based

Dynamic
Based

Test GenerationBuggy program Test Execution Patch ClassificationGenerated tests
Buggy program

Similar?
Patch & Buggy program

Opad [FSE 2017]DiffTGen [ISSTA 2017] Patch-Sim [ICSE 2018]

Daikon [SANER 2020]

Invariants Generation

Invariants Generation
Invariants Comparison Different? Patch Classification

Tests
Patch

Tests
Oracle program

补丁正确性验证技术—发展历程

APCA: Automated Patch Correctness Assessment Overview

Static
Feature
Based

Dynamic
Based

Embedding
Based

Embedding Patches Patch Classification [ASE 2020]

补丁正确性验证技术—发展历程

APCA: Automated Patch Correctness Assessment Overview

Static
Feature
Based

Dynamic
Based

Embedding
Based

Cache
[TOSEM 2022]

补丁正确性验证技术—发展历程

APCA: Automated Patch Correctness Assessment Overview

Static
Feature
Based

Dynamic
Based

Embedding
Based

Large Pre-
Trained Model
Based

PatchZero
[Arxiv 2023] Prompt Template

Zhou, Xin, Bowen Xu, Kisub Kim, DongGyun Han, Thanh Le-Cong, Junda
He, Bach Le, and David Lo. "Patchzero: Zero-shot automatic patch
correctness assessment." arXiv preprint arXiv:2303.00202 (2023).

补丁正确性验证技术—实证研究

Dynamic

PATCH-SIM & E-PATCH-SIM
R-Opad & E-Opad

Static

Anti-patterns
ssFix & S3 & CapGen

Randoop & Evosuite
DiffTGen

No Oracle Required Oracle Required

Which types of technique are more effective in identifying correct patches?
Are existing techniques complementary to each other?

Empirical Investigation

9 different techniques and 3 heuristics based on 8 static code features
902 patches automatically generated by 21 APR tools from 4 different categories

Technique
Patch

补丁正确性验证技术—实证研究

• Dynamic APCA techniques with oracles can generate a fewer number of false positives than those without oracles.

• Opad can achieve 100% precision while the recall is rather low.

• Heuristics based on static features can achieve higher recalls but are less precise.

Effectiveness of each APCA TechniqueOracle required

Dynamic

Static
Heuristics

补丁正确性验证技术—实证研究

Distribution of the overfitting patches identified by different APCA techniques.

• 610 unique overfitting patches (93.3%) can be detected by at least one technique.

• Only 11 overfitting patches are detected by all the displayed techniques.

• Substantial overfitting patches are detected exclusively by specific techniques.

Existing APCA techniques are highly
complementary to each other;

补丁正确性验证技术—实证研究

Step 1: integrate the eight static features via learning
• six classification model: Random Forest, Decision Table, J48, Naive Bayes, Logistic Regression, SMO.
• patch benchmark separation.
• 10-fold cross validation.

Step 2: combine trained model with existing techniques via majority voting
• without oracle: PATCH-SIM + Anti-patterns + Model patch validation.
• with oracle: Evosuite + Randoop + Model patch evaluation.

Integrate static features and dynamic techniques for effectiveness enhancement.Target

 Integration Results with and without the Oracle
Under both scenarios, the
integration results significantly
outperform existing techniques.

The learned model makes
contributions for performance
enhancement.

基于表示学习的补丁验证
PART 02

With the emerging of code
embedding techniques, patches can
be easily transferred to vectors,
thus facilitating the utilization of
deep learning techniques

基于表示学习的补丁验证

Dynamic Techniques

Static Techniques

Time-consuming to generate and execute tests

More efficient while less precise. Relying on manually
designed features.

Wang, Shangwen, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin.
"Automated patch correctness assessment: How far are we?." In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering, pp. 968-980. 2020.

基于表示学习的补丁验证

Buggy sub-tree

Patched sub-tree

Treating the added and deleted lines separately by considering the whole line
as a token sequence and embedding each single token.Missing Contexts

Missing Structures Treating keywords in a program in the same way with other tokens (e.g., variable
names), thus overlooking the program’s inherent structures.

基于表示学习的补丁验证

Buggy sub-tree

Patched sub-tree

Cache

基于表示学习的补丁验证—整体框架

AST Embedding

We use AST paths to embed patches
which, to a large extend, preserves the
structure of the original program since any
two consecutive nodes in the AST path are
inherent with the parent & child relation in
the parsed AST.

基于表示学习的补丁验证—数据集

Dataset

基于表示学习的补丁验证—实验结果
Effectiveness of Cache Compared with Other Representation Learning Techniques

Distribution of embedding vectors generated by Cache and other
Representation Learning Techniques

Cache can outperform other representation
learning based techniques significantly under
different experimental settings. Specifically, it
achieves an average F1-score of 78.0%.

基于表示学习的补丁验证—实验结果

Effectiveness of Cache Compared with Other APCA Techniques

As a static technique, Cache achieves the optimum
overall performance compared with existing APCA
techniques with a high F1-score reaching 93.7%.
Furthermore, it can even achieve a higher precision
than certain dynamic techniques, e.g., PATCH-SIM.

Lin, Bo, Shangwen Wang, Ming Wen, and Xiaoguang
Mao. "Context-aware code change embedding
for better patch correctness assessment." ACM
Transactions on Software Engineering and Methodology
(TOSEM) 31, no. 3 (2022): 1-29.

D
yn

am
ic

St
at

ic
le

ar
ni

ng

基于缺陷定位的补丁排序
PART 03

基于缺陷定位的补丁排序—背景

FL Tools
Buggy Program

Test Suites

Suspicious code Element

File : src/main/java/org/time/Partial.java
line 401: Partial with(int value){
line 402: Partial newP = new Partial(IC, newT,
newV);
line 403: IC.validate(newP, newV);
line 404: }

1. with
2. without
3. compare

1.line 402
2.line 403
3.line 404

File-Level

Method-Level

Statement-Level

基于缺陷定位的补丁排序—动因

36

Developers look for variable-level FL approaches

• Monitoring variable are widely used in practice

• Variables values are useful to understand the root cause of the bug

Reference URL: https://issues.apache.org/jira/browse/XERCESC-1222

Community comments

基于缺陷定位的补丁排序—框架

37

Isolating Fault-Correlated VariablesIsoVar

Spectrum-Based Fault Localization
• Fault-correlated elements should be

more frequently covered by failing
tests rather than passing tests

Mutation-Based Fault Localization
• A change of Fault-correlated elements is

more likely to change the results in failing
tests, and less likely in passing tests

基于缺陷定位的补丁排序—方法

38

• Build variable execution matrix
For each variable, IsoVar record the spectrum of the basic blocks containing that variable

Failing1 Failing2 Passing1 Passing2 Passing3

Variable

BB1 2 1 0 0 0

BB2 2 0 0 1 0

BB3 2 1 0 0 0

BB4 2 0 6 2 4

• Fulfill the insights from spectrum-based fault localization

FCV

Failing execution traces Passing execution traces

More frequently:
����� Less frequently:

�����

Dissimilar: ��� �, �

���� � =
�����

����� + �����
 − � ∗ ��� �, �

基于缺陷定位的补丁排序—方法

• Mutate the variable as mutants based on variable type

������� � = �� − � ∗ ��

i�� � = 1; i�� � = 1 + 30;

…

• Fulfill the insights from mutation-based fault localization

Mutant of FCV

Cast more impact:
��

Cast less impact:
��

Failing execution traces Passing execution traces
���������� � = ���� � + � ∗ ������� �

基于缺陷定位的补丁排序—实验结果
�� ������ < 0 || ������ >= ���������� {
�� ������ >= ���������� {

-

+

Refine Patch Priority Score by IsoVar outputs

APR Cardumen jMutRepair NPEFix Nopol Arja DynaMoth GenProg JGenProg jKali RSRepair Kali PraPR TBar SimFix Summary

#CP 3 4 4 3 774 2 45 3 2 43 3 39 80 33 1,034

#CPBP 3 4 0 3 764 2 3 3 2 13 3 17 55 29 901

#CPBPb 3 4 1 3 767 2 36 3 2 20 3 19 56 31 950

TABLE 3: Patch Prioritization for Existing APR Techniques

prioritize 49 more correct patches

Insight correct patches should involve more fault-correlated variables

Enhance 14 automated program repair techniques to rank the
correct patches. The precision improvement is 69.6%-79.9%

总结与展望
PART 04

总结与展望

• Automated program repair is important, especially in the large language model era.
• Precise patch correctness assessment (PCA) is the key for practical automated

program repair.
• Existing PCA efforts are yet insufficient. Our proposed static analysis based, and

learning based methods have demonstrated promising performance.

总结与展望—补丁表示学习

How to better represent a patch?Direction

Overview of CCBERT

CCBERT: Self-Supervised Code Change
Representation Learning, Arxiv 2023

Pre-training Objectives

Code-Change-Oriented Pre-Trained Model

总结与展望—补丁表示学习

How to better represent a patch?Direction

Lin, Bo, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao. "CCT5: A
Code-Change-Oriented Pre-Trained Model." ESEC/FSE (2023).

Overview of CCT5

Code-Change-Oriented Pre-Trained Model

总结与展望—拥抱大模型

How to design better prompts?Direction

Wu, Yi, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and
Sameena Shah. "How Effective Are Neural Networks for Fixing Security Vulnerabilities."
(ISSTA 2023).

Prompt Design

总结与展望—拥抱大模型

How to design better prompts?Direction

Correctly Repaired Vulnerabilities. (X/Y: X denotes correct patches while Y denotes plausible patches)

• Existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%)
vulnerabilities on average, exhibiting the best fixing capability.

• Manually examine whether a patch is correct, and 44.9% of the patches are plausible but incorrect. It
calls for action to design better APCA techniques.

• Model fine-tuning can enhance the repair performance. It calls for action to create larger
vulnerability repair training datasets, and fine-tune LLMs with such data.

总结与展望—拥抱大模型

How to design better prompts?Direction

Jin, Matthew, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. “Inferfix: End-to-end program repair with LLMs.” arXiv preprint (2023).

Prompt Design

§ Bug Type
§ Patch Contexts
§ Historical Bug Fixes

总结与展望—拥抱大模型

How to design better prompts?Direction

§ Whether this plausible
patch is correct?

§ Whether this plausible
patch is correct?

Enhanced

§ Bug Type
§ Patch Contexts
§ Historical Bug Fixes
§ ……

Static Analysis

Data Mining

总结与展望—微调大模型

How to fine-tune an specified LLM model?Direction

总结与展望—微调大模型

How to fine-tune an specified LLM model?Direction

{

 "instruction": "Detect whether the following code contains

vulnerabilities.",

 "input": "static struct pktcdvd_device

*pkt_find_dev_from_minor(int dev_minor)\n{\n\tif

(dev_minor >= MAX_WRITERS)\n\t\treturn

NULL;\n\treturn pkt_devs[dev_minor];\n}",

 "output": "1"

{

 “instruction”: “Detect whether the following code contains vulnerabilities.”,

 “input”: “static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)\n{\n\tif (dev_minor >=

MAX_WRITERS)\n\t\treturn NULL;\n\treturn pkt_devs[dev_minor];\n}”,

 “output”: “vulnerable. The sign of 'dev_minor' is not checked, which could permit a negative integer to bypass the

'dev_minor >= MAX_WRITERS' check. This can allow an invalid memory access to occur when 'dev_minor' is used as an

index for 'pkt_devs', leading to sensitive information leaks or system crashes. "

}

THANKS

