

2024 AI+研发数字峰会

Al+ Development Digital summit AI驱动研发变革 促进企业**降本增效**

北京站 08/16-17

基于物理条件约束的可信视觉生成 大模型

科技生态圈峰会+深度研习 ——1000+技术团队的共同选择

Ing

2024 AI+研发数字峰会

AI+ Development Digital summit

深圳站 11/08-09

A I 驱动研发变革 促进企业降本增效

2024深圳站-议题设置

Al+产品线	LLM驱动产品创新	LLM驱动需求与业务分析	AI驱动设计与用户体验	扫 描 右 侧 二 维 码 查看更多会议详情	
Al+开发线	AI 原生应用开发框架与技术	Al Agents在研发落地实践	LLM驱动编程与单测		
Al+测试线	LLM驱动测试分析与设计	基于LLM生成测试脚本与数据	LLM和AI应用的评测	早鸟票限时抢购中	(截止到9月30日)
Al+工程线	Al+DevOps 与工具 (LLM 时代的平台工程)	大模型对齐与安全	端侧大模型与云端协同	¥ 3680	¥ 280
Al+领域线	领域大模型 SFT 与优化	知识增强与数据智能	大厂专场	早鸟票	学生票

朱思语 复旦大学教授

复旦大学人工智能创新与产业研究院研究员,长聘正教授,博士生导师。 朱思语本科毕业于浙江大学,博士毕业于香港科技大学。在博士阶段,作 为联合创始人创立了3D视觉公司Alituzre,并后来被苹果公司收购。2017 年至2023年,在阿里云人工智能实验室担任总监。2023年起,任职于复 旦大学人工智能创新与产业研究院,担任研究员和博士生导师。朱思语的 主要研究方向包括视频和三维生成式模型,涉及基于视觉的三维和视频的 重建、生成、理解、方针和模拟。他发表了60余篇高水平会议和期刊论文, 包括CVPR、ICCV、ICLR和TPAMI等计算机视觉和机器学习领域,包括 Hallo, Champ, AnimateAnything等有一定行业影响力的视频生成大模 型。在40余个计算机视觉国际比赛和榜单上取得第一名。

Visual generative model

Video generative methods

• The field of video generation has seen rapid development, reaching several milestones...

VAE: maximize variational lower bound

Flow-based models: Invertible transform of distributions

GAN: Adversarial training

Diffusion models: Gradually add Gaussian noise and then reverse

Diffusion for visual generation (1)

• Denoising Diffusion Probabilistic Models (DDPMs)

Diffusion for visual generation (2)

• Stochastic Differential Equations (Score SDEs)

Key Elements of visual Diffusion Models

- Pixel diffusion (original input)
- Latent space diffusion

- Unet
- Transformer

Latent Diffusion Transformer

DiT Block with adaLN-Zero

Sora, breakthrough

- <u>Consistency</u>: consistency in 3D rendering, long-range coherence, and object permanence.
- <u>High fidelity</u>.
- <u>Surprising length</u>: extended video length capability (Sora: 1 minute vs. previous systems: seconds).
- **Flexible resolution**: generation of videos across various durations, aspect ratios, and resolutions.

Sora, key technologies

- The **DiT** framework by Meta (2022.12) is designed for video processing.
- Google's **MAGVIT** (2022.12) focuses on Video Tokenization.
- Google DeepMind introduced **NaViT** (2023.07) to support various resolutions and aspect ratios.
- OpenAI's **DALL-E 3** (2023.09) enhances Video Caption generation for improved conditioned video creation.

Modeling the physical world

• We know that it is very complicated real physical model.

probabilistic

- bayesian inference;
- probabilistic graphical models.

deterministic

- mathematical equations;
- physics based simulation;
- control theory.

Modeling the physical world

• We know that it is very complicated real physical model.

probabilistic

- bayesian inference;
- probabilistic graphical models.

deterministic

- mathematical equations;
- physics based simulation;
- control theory.

Key elements of a physical world

• Given a Sora demo (the walking woman in the Tokyo street), the key elements of a physical world, in the graphical way...

- Appearance
- Geometry
- Lighting
- Motion & Animation
- Audio

Modeling the physical world

• [CVPR] Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle

Espresso

Chick-Chicken

Split-Cookie

Flame-Steak

Modeling the physical world

• [CVPR] Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle

- In fact, the world is hard to model in a **probablistic** way.
- Sora resource consumption...
 - 1 billions of images;
 - -1 millions of hours of video data;
 - 10 trillions tokens after tokenizing images and videos
 - Training with ~5,000 A100s in parallel.

• Sora failure case in geometry and appearance.

• Sora failure case in lighting.

• Sora failure case in motion and animation.

- VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model
- Geometric enhancement is still needed for multi-view images.

- VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model
- From a static aspects, SVD is able to model multi-view images.

- Stag4D: Spatial-Temporal Anchored Generative 4D Gaussians
- From a temporal aspects...

- STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians
- From a **temporal** aspects...

- Ilya Sutskever: compression is generalization.
- The best lossless compression for a dataset is the best generalization for data outside the dataset.

Apply the deterministic conditions

- Different representations of deterministic conditions in the physical world.
- Much less data and parameters!

Motion & Animation

Apply the deterministic conditions

• There are two ways to inject deterministic information.

Image Human Animation

• Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance

Image Human Animation

• Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance

Image Human Animation

• Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance

Reference Image

Animate Anyone

Ours with PST Ours without PST

Table 1: Quantitative comparisons on Tiktok dataset. * indicates that the proposedapproach is fine-tuned on the Tiktok training data-set.

Image Portrait Animation

• Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation

Portrait Animations of Different Audio Styles

Image Portrait Animation

• Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation

Image Portrait Animation

• Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation

Method	FID↓	FVD↓	Sync-C↑	Sync-D↓	E-FID↓
SadTalker [49]	22.340	203.860	7.885	7.545	9.776
Audio2Head [38]	37.776	239.860	8.024	7.145	17.103
DreamTalk [20]	78.147	790.660	6.376	8.364	15.696
AniPortrait [42]	26.561	234.666	4.015	10.548	13.754
Ours	20.545	173.497	7.750	7.659	7.951
Real video	-	-	8.700	6.597	-

Table 1: The quantitative comparisons with the existed portrait image animation approaches on the HTDF data-set. Our proposed method excels in generating high-quality, temporally coherent talking head animations with superior lip synchronization performance.

Lip	Face	Pose	FID↓	FVD↓	SynC↑	SynD↓	E-FID↓
			20.581	193.062	6.499	8.691	9.133
\checkmark			20.164	184.550	5.952	9.347	8.113
\checkmark	\checkmark		20.42	171.312	7.502	8.036	8.287
\checkmark	\checkmark	\checkmark	20.545	173.497	7.750	7.659	7.951

Table 5: Ablation study of hierarchical audio-visual (lip, face and pose) cross attention.

Dynamic Protein Structure Prediction

• 4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Temporal Alignment

Denoising Process of Our Diffusion Model

The intermediate results at different time steps of the score-based diffusion model

Dynamic Protein Structure Prediction

• 4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Temporal Alignment

- Apply deterministic conditions to probabilistic diffusion.
- Less data and paramters!

Geometry

Lighting

Motion & Animation

科技生态圈峰会+深度研习 ——1000+技术团队的共同选择

Ing

2024 AI+研发数字峰会

AI+ Development Digital summit

深圳站 11/08-09

A I 驱动研发变革 促进企业降本增效

2024深圳站-议题设置

Al+产品线	LLM驱动产品创新	LLM驱动需求与业务分析	AI驱动设计与用户体验	扫 描 右 侧 二 维 码 查看更多会议详情	
Al+开发线	AI 原生应用开发框架与技术	Al Agents在研发落地实践	LLM驱动编程与单测		
Al+测试线	LLM驱动测试分析与设计	基于LLM生成测试脚本与数据	LLM和AI应用的评测	早鸟票限时抢购中	(截止到9月30日)
Al+工程线	Al+DevOps 与工具 (LLM 时代的平台工程)	大模型对齐与安全	端侧大模型与云端协同	¥ 3680	¥ 280
Al+领域线	领域大模型 SFT 与优化	知识增强与数据智能	大厂专场	早鸟票	学生票

THANKS

